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Abstract

In this paper, we propose an approach to learn parame-
ters for robust visual object tracking. Rather than using pre-
trained models with off-line features, Bayesian parameter
inference using Markov Chain Monte Carlo and particle fil-
tering is performed. Particle Marginal Metropolis-Hastings
(PMMH) has been proposed in the literature for batch pa-
rameter inference in linear Gaussian multi-target tracking
systems. Instead, a fixed-lag parameter inference algorithm
for tracking a single target from discrete visual features is
analyzed. Robustness of the method is measured in terms of
re-initialization rates and frames-per-second, and we con-
clude that the algorithm is well suited for visual tracking
used in a wide variety of scenarios.

1. Introduction
Visual tracking is an important task in applications

requiring video analysis, such as surveillance, robotics,
human-computer interaction and medical diagnostic among
others. Essentially, the problem consists of estimating the
state (e.g. position and velocity) of a moving target from a
sequence of images. Broadly speaking, visual tracking can
be divided into three main components : object detection,
prediction of the target state and updating the estimation
using current measurements. These subtasks have a natural
interpretation as model-based inference problem such as the
state-space representation [10].

Traditional tracking systems based on the state-space
representation use a fixed model (consisting of a dynamic
and observation model) with known parameters, however
this approach is prone to fail when the object suffers from
appearance changes [15]. Sources of variation may dif-
fer from shape deformation, posture changes and changing
scene conditions. Therefore, updating strategies based on
on-line learning have been proposed in order to cope with
variations of the original model [11].

Furthermore, long-term tracking systems are required to
track arbitrary objects from an initial bounding box with-

out relying on prior information about the object [2]. Re-
cent approaches for this task combine tracking, learning and
detection in order to develop a continuous adaption frame-
work. However, these methods couple supervised learning
with tracking and therefore cannot be used to sequentially
update the tracking system [6].

1.1. Related Work

Pose, shape and dynamic deformations are considered as
intrinsic variations while occlusions, camera motion and il-
lumination changes are regarded as extrinsic variation. On-
line and off-line learning is a key feature for handling these
variations in an adaptive fashion, however these methods
may also introduce extra variation and lead to drifting [15].

A generative approach for adapting to appearance and
velocity changes within the standard state-space model was
presented in [16]. Object appearance was modeled as Gaus-
sian mixture from image intensities and model updating is
performed with the Expectation-Maximization algorithm.

Parameter learning for state space models has been re-
ceiving increased attention in the signal processing com-
munity. An offline Markov Chain Monte Carlo (MCMC)
method for tracking and learning multiple targets with
non-linear and non-Gaussian likelihoods was proposed in
[1, 14]. The MCMC algorithm uses continuous (dynamic
and appearance model) and discrete variables (data associ-
ation model), however sampling is carried out in a reduced
model by analytically integrating the continuous variables.

In the context of visual tracking, discrete features are
important because they lead to robust appearance represen-
tations [4]. MCMC methods were developed for adapting
both continuous and discrete variables without an explicit
detection mechanism [12]. The method uses frame differ-
encing and therefore is only restricted to static camera sce-
narios.

In this paper, we use a standard color observation model
and a constant velocity model and develop an MCMC
methodology for adapting all model parameters. Similar to
the aforementioned MCMC approaches, our method is able
to process several images in batch so parameter learning is
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performed off-line. However, an on-line parameter estima-
tion method is devised using a few MCMC steps using a
small batch of measurements (fixed-lag) within the recur-
sive state estimation.

2. State Space Model
Let xk ∈ Rnx be the state of the target at time k and

yk ∈ Rny the observed measurements. In this case, we
consider a generative model in the form of:

θ ∼ p(θx, θy)

x0 ∼ p(x0)

xk ∼ p(xk|xk−1, θx)

yk ∼ p(yk|xk, θy)

Given a set of batch measurements y1:T , we would like
to estimate the target states x1:T given the parameter θ. Us-
ing Bayes rule, we can calculate the full posterior distribu-
tion:

p(x0:T , θ|y1:T ) ∝ p(y1:T |x0:T , θ)p(x0:T |θ)p(θ)

Traditionally, in visual tracking problems it is assumed
that the parameter vector θ is known and we only need to
estimate recursively the states x0:T . This approach, makes
it difficult to cope with appearance changes that are com-
monly solved using heuristic model update strategies. In-
stead, we are interested in updating the model using the
marginal distribution:

p(θ|y1:T ) =

∫
p(x0:T , θ|y1:T )dx0:T (1)

2.1. Particle MCMC

Due to its latent structure, direct parameter estimation
using the marginal likelihood (Equation 1) is not feasible.
Instead, we can estimate θ using the marginal posterior dis-
tribution p(θ|y1:T ) ∝ p(y1:T |θ)p(θ), leading to the follow-
ing energy function:

ψ(θ) = − log p(y1:T |θ)− log p(θ) (2)

The above energy function could be used for parame-
ter learning using maximum a posteriori (MAP) estima-
tion or Bayesian inference using MCMC, however these ap-
proaches require analytic marginalization of the states x0:T .
Sequential Monte Carlo (SMC) techniques such as particle
filtering and smoothing are standard tools for recursively

approximating integrals and therefore can be used to per-
form inference in general state space models. However, per-
forming inference in both the states and the parameters of
the model is a complex problem that requires to calculate
intractable integrals. Nevertheless, it has been shown that
standard SMC methods can be also used to build a proposal
distributions for MCMC models, such that:

p̂(θ|y1:T ) =

n∑
j

1

N
p(xj0:T , θ|y1:T ) (3)

Algorithm 1 can be used for batch parameter estimation:

Algorithm 1 Batch parameter estimation
Require: {x0, θ

0,y1:T ,M,N}
1: {wjT ,x

j
0:T ; j = 1, . . . , n} ∼ pθ0(x1:T |y1:T )

2: p̂θ0(y1:T ) =
∏T
k=1 p̂(yk|y1:k−1, θ

0)
3: for i = 1 : M do
4: θ∗ ∼ q(θ∗|θi−1)
5: {wjT ,x

j
0:T ; j = 1, . . . , n}∗ ∼ pθ∗(x1:T |y1:T )

6: p̂θ∗(y1:T ) =
∏T
k=1 p̂(yk|y1:k−1, θ

∗)

7: α = min
{

1, pθ∗ (y1:T )p(θ
∗)q(θi−1|θ∗)

pθi−1 (y1:T )p(θi−1)q(θ∗|θi−1)

}
8: u ∼ U(0, 1)
9: if u ≤ α then

10: θi ← θ∗
11: else
12: θi ← θi−1

13: end if
14: end for

3. Fixed-lag parameter estimation
Now we are interested in on-line parameter estimation.

Since at any time k < T we don’t have access to the
complete data, the estimation problem becomes more cum-
bersome than batch MCMC. If we now consider a fixed-
lag L ≤ k, a sequential estimation procedure could target
p(θ|y1:L) and use MCMC steps within SMC [3]. Algorithm
2 can be used for on-line parameter estimation:

It is worth noting that for large fixed-lag windows,
the memory requirements may increase exponentially over
time.

3.1. Numerical Example

In order to illustrate the convergence results of the fixed-
lag parameter estimation technique, we use a 1-dimensional
non-linear state space model specified by:

xk+1 = 0.5xk + 25xk/(1 + x2k) + 8 cos(1.2 ∗ k) + vk

yk = 0.05x2k + ek



Algorithm 2 Fixed-lag parameter estimation
Require: {x0, θ

0,y1:T ,M,N,L}
1: {wj0 = 1/n,xj0; j = 1, . . . , n} ∼ pθ0(x0)
2: for k = 1 : T do
3: xk ∼ p(xk,xk−1, θk−1)
4: {wjk,x

j
0:k; j = 1, . . . , n}k ∼ pθk(x1:k|y1:k)

5: p̂θk(y1:L) =
∏L
k=1 p̂(yk|y1:k−1, θ

k)
6: for i = 1 : M do
7: θ∗ ∼ q(θ∗|θk−1)
8: {wjk,x

j
0:k; j = 1, . . . , n}∗ ∼ pθ∗(x1:k|y1:k)

9: p̂θ∗(y1:L) =
∏L
k=1 p̂(yk|y1:k−1, θ

∗)

10: α = min
{

1, pθ∗ (y1:L)p(θ
∗)q(θk|θ∗)

p
θk

(y1:L)p(θk)q(θ∗|θk)

}
11: u ∼ U(0, 1)
12: if u ≤ α then
13: θk ← θ∗
14: end if
15: end for
16: end for

where vk ∼ N (0, q) and ek ∼ N (0, r) are Gaussian
noise sources with unknown parameters θ = {q = 0.1, r =
1} with independent Inverse gamma priors IG(0.1, 0.1).
Batch and fixed-lag estimation techniques are compared
with different number of particles N and MCMC iterations
M . The results over 100 different runs are summarized in
Table 1.

N M r̂ q̂ RMSE Time[sec]
Online (L = k) 500 100 0.18 1.17 1.16 142.85
Online (L = 3) 500 100 0.37 1.59 2.21 14.26

Batch 500 3000 0.12 1.10 0.53 85.17

Table 1. Numerical results for batch and online (fixed-lag) param-
eter estimation. A fixed-lag L = k uses all data up to time k and
therefore increases computation time. Instead, online parameter
estimation using only a small lag L = 3 makes use of a non-sliding
window to calculate the acceptance probability of the estimates.

4. On-line parameter estimation for visual ob-
ject tracking

Visual tracking relies on object appearance representa-
tions that can be regarded as generative or discriminative
approaches. Generative appearance models are based on
probabilistic reasoning and require training data in order to
learn the conditional densities to be used in the state estima-
tion problem.

Generative appearance models used in visual tracking
have traditionally been based on color [13] and texture [9]
templates which are difficult to update. Instead, we use
a generative model that is suitable for on-line parameter
learning [4].

4.1. Dynamic model

The object model used in our approach uses an area ap-
proximation and a constant velocity model of a rectangle
that bounds the target of interest. At time k, the object is
represented as xk = {xk, zk, ẋk, żk, wk, hk}, where (x, z)
represents the left-most pixel of the bounding box, (ẋk, żk)
the constant velocity on each one of the axis and (wk, hk)
the width and height of the bounding box. The dynamic
model can be written as:

xk = xk−1 + ẋk−1 +N (0, σ2
x)

zk = zk−1 + żk−1 +N (0, σ2
z)

The velocities (ẋk, żk) are independently sampled from
a Gaussian distributionN (0, σ2

v) while the width and height
of the bounding box are kept constant (wk, hk) = (w0, h0).
Consequently, the parameters of the dynamic model can be
written as θx = (σx, σz, σv, w0, h0).

This simple model cannot be used when the target is un-
der velocity, aspect-ratio or size changes. Nevertheless, in-
troducing some extra parameters the model can be modified
in order to cope with those variations.

4.2. Observation model

Since gradient orientation histograms are expensive to
compute, we only rely on color histograms for our observa-
tion model. In the proposed approach, an initial bounding
box is used to generate a multinomial distribution that rep-
resents the H and S channels of the color histogram in the
HSV color space.

The multinomial distribution specifies the probabil-
ity of observing a vector with discrete elements y =
(y1, . . . , yNb), containing counts on each one of the Nb
bins of the color histogram. The likelihood of a color his-
togram given certain parameter vector θy = (θ1, . . . , θNb)
can therefore be written as:

p(y|θ) =
n!∏
i yi!

∏
i

θyii (4)

where n =
∑
i yi correspond to the total number of pix-

els in the ROI.
This model has been extensively used within the natu-

ral language processing community for text analytics. For
the image classification task, it has been recently reported
that better discriminative power can be achieved when the
histogram counts are normalized [7].

4.3. Model updating

SMC techniques work well when all parameters θ of the
model are known, but this approach is largely sub-optimal



when the problem consists of jointly estimating the states
of several targets (multi-target) and the model parameters
[8, 5].

In this paper, we concentrate on the single target case
with unknown parameters θ. Algorithm 2 is used to sequen-
tially sample both the target states and model parameters,
according to:

q(θ∗x|θi−1x ) = N (θi−1x , Ix)

q(θ∗y|θi−1y ) =
( G(θi−1y [1], β)∑

j G(θi−1y [j], β)
, . . . ,

G(θi−1y [Nb], β)∑
j G(θi−1y [j], β)

)

where G(θi−1y [j], β) is a sample from a Gamma distri-
bution whose shape parameter is taken from the observed
color histogram. It’s important to notice that since the sup-
port of the proposal distribution q(θ∗x|·) is larger than the
target distribution, some samples must be discarded.

5. Experimental Results

In order to demonstrate the advantages of the proposed
model updating approach over other discriminative ap-
proaches, we evaluate the tracking results on the Visual Ob-
ject Challenge 2015 (VOT) dataset. This dataset contains
several sequences containing moving camera, target pose,
velocity and scale changes, varying illumination conditions
and occlusions among other difficulties 1.

Table 2 summarizes the static parameters used for initial-
ization:

parameter value
σ2
x 0.1
σ2
y 0.1
σ2
v 0.1
Nb 9
α (1/Nb, . . . , 1/Nb)

Table 2. Model parameters

In order to quantitatively analyze the performance the
proposed approach, we use two commonly used evaluation
metrics. A pixel-wise comparison between the annotated
ground truth and the estimated object state is performed on
each frame and the average precision P̄ and recall R̄ are
calculated as follows:

1http://www.votchallenge.net/vot2015/

P̄ =
1

|F |

|F |∑
i

|TP |i
|TP |i + |FP |i

R̄ =
1

|F |

|F |∑
i

|TP |i
|TP |i + |FP |i

where |F | is the total number of frames in the sequence,
and |TP |i and |FP |i correspond to i− th frame true posi-
tive and false positives.

Evaluation is performed according to the VOT challenge
protocol and the PMMH learning method is tested against a
baseline tracker (particle filter without parameter learning).
Table 3 shows the parameters used for the tracking system.

parameter value
N 100
M 3
L 3
β 1

Table 3. Static tracker parameters

Both trackers are initialized using the first frame of each
sequence and are allowed to re-initialize when the overlap
between the ground-truth and the estimate is lower than
a threshold t = 0.1. Table 4 shows the average perfor-
mance measure for 15 runs of each method on the VOT2015
dataset.

method accuracy recall
pmmh 0.57 0.57
tracker 0.59 0.58

Table 4. Average accuracy and recall for the PMMH and the base-
line tracker.

The system was tested on a server equipped with a In-
tel(R) Xeon(R) CPU E5-2620 v3 2.40GHz. Both trackers
are implemented in C++, without resorting to any parallel
or thread-level optimizations. In all evaluations, all images
and ground-truth data are pre-loaded into memory and the
running time of the algorithm is measured in terms of num-
ber of frames per second (FPS) (see Figure 1).

In order to evaluate the posterior distribution of the state
and observation parameters, PMMH requires complete re-
juvenation of the particle paths up to a fixed-lag L = 3. In
terms of processing speed, the baseline method clearly out-
performs the proposed approach. However, if we measure
robustness in terms of the number of re-initializations, we
can see the advantage of using PMMH (see Figure 2).

Figures 4 and 6 show the number of re-initializations
required to complete the sequences : bolt1,bolt2,fish1 and
fish2.

http://www.votchallenge.net/vot2015/
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Figure 1. Frames per second (fps) for PMMH and baseline tracker.
Compared to the baseline tracker (right), PMMH tracking (left)
shows increased complexity.
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Figure 2. Robustness of each method is measured in terms of the
number of re-initializations required to complete the sequence (re-
initialization rate). Although PMMH adds complexity to the base-
line tracker, target tracking with parameter learning requires less
re-initializations.

Figure 3. Frame # 100 of the bolt1 sequence. Ground truth is
shown in green and estimate is shown in red.

Table 5 shows the overall results on the VOT2015 dataset
averaged over 15 different runs.
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Figure 4. Number of re-initiatializations required to complete
bolt1 and bolt2 sequences

Figure 5. Frame # 65 of the fish1 sequence. PMMH (left image) is
able to better adapt to shape and appearance changes.
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Figure 6. Number of re-initiatializations required to complete fish1
and fish2 sequences
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7. Conclusions

A Bayesian approach for parameter inference in single target
tracking systems was presented. The method achieves improved
performance in several tracking scenarios when compared with a
baseline particle filter with manually tuned parameters. Algorithm
complexity and poor MCMC convergence can be seen as the major
drawbacks of the proposed approach. Future work will take into
account these issues and will compare the results with other state-
of-the-art tracking systems.



pmmh tracker
sequence fps rate % fps rate %
bag 4.89 5.48 59.89 11.02
ball1 17.40 18.03 105.00 16.43
ball2 31.43 19.51 41.00 21.95
basketball 8.25 5.78 128.89 8.79
birds1 15.92 30.05 248.60 34.08
birds2 9.54 3.30 140.14 2.56
blanket 17.53 1.13 225.00 1.90
bolt1 17.68 2.42 291.67 1.89
bolt2 17.49 5.64 293.00 10.13
book 12.41 14.70 175.00 14.02
butterfly 8.11 5.83 134.22 5.65
car1 7.49 12.17 110.12 20.58
car2 31.77 4.46 393.00 6.81
crossing 7.06 7.79 111.35 7.94
dinosaur 7.44 4.97 115.46 6.02
fernando 3.47 11.53 51.17 16.12
fish1 16.92 2.99 268.40 13.01
fish2 12.94 5.48 161.89 12.04
fish3 14.97 1.95 236.43 7.49
fish4 15.28 4.83 215.97 7.80
girl 5.42 1.82 89.29 0.53
glove 13.47 14.83 120.00 17.29
godfather 19.79 4.21 329.40 4.15
gymnastics2 3.28 5.19 44.50 10.21
gymnastics3 1.49 7.01 21.58 7.29
gymnastics4 4.02 3.48 54.55 3.38
hand 16.58 9.51 267.00 12.16
handball1 35.42 13.79 377.00 18.45
handball2 20.40 14.93 402.00 26.80
helicopter 2.99 4.17 41.15 3.61
leaves 14.91 20.74 63.00 21.59
marching 4.10 6.83 60.30 10.15
matrix 13.97 12.80 100.00 12.50
motocross1 4.56 13.68 68.33 14.33
motocross2 1.26 2.95 18.64 0.91
nature 3.16 4.77 43.94 6.55
pedestrian1 22.00 11.43 140.00 13.78
pedestrian2 12.96 8.74 194.09 3.74
rabbit 28.79 32.11 158.00 34.90
racing 5.37 6.24 71.07 6.79
road 14.17 10.84 241.80 12.54
shaking 9.99 8.80 129.78 11.82
sheep 18.60 3.24 251.00 4.30
soccer1 9.62 7.79 139.38 8.21
soldier 5.28 7.39 96.60 12.75
sphere 5.79 15.39 82.63 19.70
tiger 8.77 8.77 127.75 9.21
traffic 16.32 9.42 191.00 5.05
tunnel 22.02 17.16 312.00 10.21
wiper 19.03 15.01 316.64 16.88

Table 5. Average performance (fps) and robustness (re-
initialization rate) of PMMH and baseline tracker on the VOT2015
dataset.
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